A Universal Integral Independent of Measurable Spaces and Function Spaces
نویسندگان
چکیده
For [0,∞]-valued (monotone) measures and functions, universal integrals are introduced and investigated. For a fixed pseudomultiplication ⊗ on [0,∞] the smallest and the greatest universal integrals are given. Finally, a third construction method for obtaining universal integrals is introduced.
منابع مشابه
$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملDouble Integral Characterization for Bergman Spaces
‎In this paper we characterize Bergman spaces with‎ ‎respect to double integral of the functions $|f(z)‎ ‎-f(w)|/|z-w|$,‎ ‎$|f(z)‎ -‎f(w)|/rho(z,w)$ and $|f(z)‎ ‎-f(w)|/beta(z,w)$,‎ ‎where $rho$ and $beta$ are the pseudo-hyperbolic and hyperbolic metrics‎. ‎We prove some necessary and sufficient conditions that implies a function to be...
متن کامل$C$-class functions on common fixed point theorems for weak contraction mapping of integral type in modular spaces
In this paper, we use the concept of $C$-class functions introduced by Ansari [4] to prove the existence and uniqueness of common fixed point for self-mappings in modular spaces of integral inequality. Our results extended and generalized previous known results in this direction.
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملA Universal Integral
Based on a minimal set of axioms we introduce a general integral which can be defined on arbitrary measurable spaces. It acts on measures which are only (finite) monotone set functions and on measurable functions whose range is contained in the unit interval. We introduce the notion of integral equivalence of pairs of measures and functions which leads us to a special important general integral...
متن کامل